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Abstract

The title problem is considered under the assumption that both the surface temperature of the cylinder and the main-

stream velocity at the outer edge of the boundary layer vary linearly with the axial distance x from the leading edge.

Self-similar solutions are given in exact analytic form. Their domain of existence in the plane (fw,k) of the suction/injec-
tion parameter fw and the mixed convection parameter k is determined. It is shown that in general for both the aiding

(k > 0) as well as the opposing (k < 0) flow regimes multiple solutions bifurcating from certain branching curves of the

plane (fw,k) occur. The particular case of the dual solutions is discussed in the paper in detail.

� 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Convective flow in fluid-saturated porous media is an

area of research undergoing rapid growth in fluid

mechanics and heat transfer. This is motivated by a wide

range of geophysical and engineering applications

including geothermal energy extraction, groundwater

resource management, building thermal insulation,

enhanced oil recovery, nuclear waste disposal, metal

casting (alloy solidification), grain storage, and heat

transfer in electronic equipment, among many others.

A comprehensive collection of references and reviews

of several topics within this broad research area can be
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found in the recent books by Nield and Bejan [1], Ing-

ham and Pop [2], Pop and Ingham [3], Vafai [4], and

Bejan and Kraus [5].

The Darcian mixed convection flow from a horizontal

circular cylinder in a vertical streamwas intensively inves-

tigated for its applications in many engineering fields. A

rich collection of references devoted to this problem can

be found in the recent paper by Zhou and Lai [6]. How-

ever, the Darcian mixed convection over a vertical circu-

lar cylinder in a vertical stream, although also frequently

encountered in applications, has received rather little

attention. To the authors� best knowledge there are only
a few papers addressed to this topic, [7–10]. In this re-

spect,Merkin and Pop [7], have found that for an isother-

mal cylinder a solution of the boundary layer equation is

possible only when e � Ra/Pe P �1.354 and that there is

a region of reversed flow when e < �1. Here e > 0
ed.

mailto:magyari@hbt.arch.ethz.ch


Nomenclature

a,b dimensionless scale factors

f dimensionless stream function

fw suction/injection parameter

g acceleration due to gravity

h reduced heat transfer coefficient

K permeability of the porous medium

L axial length unit

Pe Péclet number for a porous medium

r radial coordinate

r0 cylinder radius

Ra Rayleigh number for a porous medium

T fluid temperature

u,v velocity components in the x- and r-direc-

tions

U(x) mainstream velocity in the axial direction

vw velocity of suction or injection in the radial

direction

x axial coordinate

Greek symbols

am equivalent thermal diffusivity

b coefficient of thermal expansion

c curvature parameter

T0 reference temperature

g similarity variable

h dimensionless temperature

k mixed convection parameter

t kinematic viscosity

w stream function

Subscripts

w condition at the wall

1 condition in the ambient fluid
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corresponds to the assisting (hot cylinder) and e < 0 to the

opposing (cold cylinder) flow case, respectively. By Hoo-

per et al. [8] the existence of nonsimilarity solutions has

been reported, while by Pop and Na [9] the case of the

variable surface heat flux has been investigated in detail.

In the paper of Yih [10] the coupled heat and mass trans-

fer has been examined in this context.

In the present paper we consider the problem of sim-

ilarity solutions for the steady mixed convection bound-

ary layer flow along a permeable semi-infinite thin

vertical cylinder embedded in a porous medium by

assuming that both the mainstream velocity U(x) and

the surface temperature of the cylinder Tw(x) are linear

functions of the axial distance x from the leading edge/

base of the cylinder,

UðxÞ ¼ U1
x
L

ð1Þ

T wðxÞ ¼ T1 þ sT T 0

x
L

ð2Þ

The choice of these boundary conditions is motivated

on the one hand that the basic equations admit an exact

analytical solution for this case (which rarely can be

encountered in mixed convection problems in porous

media). On the other hand, they apply to several prob-

lems of practical interests as e.g. cooling of nuclear reac-

tors during emergency shutdown, cooling of electronic

devices by fans, in heat exchangers placed in a low-

velocity environment, in solar central receivers exposed

to wind currents, etc. No matter how small the exter-

nally induced flow is, superimposition of this forced flow

needs to be considered, since it can affect the flow struc-

ture and total heat transfer significantly.
In Eqs. (1) and (2) L sets the scale of the x axis,

U1 > 0 is the mainstream velocity at the axial distance

x = L, T0 > 0 is a reference temperature, T1 > 0 is the

ambient temperature of the fluid and sT = +1 corre-

sponds to a hot cylinder (Tw > T1, for any x > 0) and

sT = �1 to a cold cylinder (Tw < T1, for any x > 0),

respectively. Thus, the buoyancy forces aid the develop-

ment of the boundary layer for sT = +1 and oppose it for

sT = �1, respectively. We also allow for a nonvanishing

radial velocity at the cylinder surface v(x, r0) � vw(x)

which proves in this case to be independent of x (see be-

low) such that vw < 0 means suction, vw > 0 injection

and vw = 0, corresponds to an impermeable surface for

any x, respectively. The paper presents novel exact ana-

lytic solutions of this problem and discusses the heat

transfer characteristics of the corresponding mixed

convection flows in detail.
2. Basic equations

We consider the steady mixed convection flow of a

Darcian viscous incompressible fluid along vertical per-

meable cylinder of radius r0 embedded in a fluid-satu-

rated porous medium of constant ambient temperature

T1 under the assumption that the mainstream velocity

is given by Eq. (1) (see Fig. 1). The governing equations,

namely the equation of continuity, the Darcy equation

with Boussinesq approximation and the energy equation

in the usual boundary-layer approximation are of the

form (see e.g. [1,2,7])

o

ox
ðruÞ þ o

or
ðrvÞ ¼ 0 ð3Þ



Fig. 1. Geometry and flow and temperature boundary layer

domain.
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u ¼ UðxÞ þ gbK
t

ðT � T1Þ ð4Þ

u
oT
ox

þ v
oT
or

¼ am
o2T
or2

þ 1

r
oT
or

� �
ð5Þ

The coordinates x P 0 and r P r0 measure distances

along the surface and normal to it respectively, u and v

are the velocity components along x and r axes, T(x, r) is

the fluid temperature, g is the acceleration due to gravity,

K is the permeability of the porous medium, tis the kine-
matic viscosity and am is the effective thermal diffusivity.

The boundary condition to be applied to Eqs. (3)–(5) are

v ¼ vwðxÞ; T ¼ T wðxÞ on r ¼ r0 ð6Þ

u ! UðxÞ; T ! T1 as r ! 1 ð7Þ

where vw < 0 for suction, vw > 0 for injection and vw = 0

for an impermeable surface, respectively.

It should be mentioned that flow over cylinders is

considered to be two-dimensional if the body radius is

large compared to the boundary layer thickness. For a

thin or slender cylinder, the radius of the cylinder may

be of the same order as the boundary layer thickness.

Therefore, the flow may be considered as axisymmetric

instead of two-dimensional. In this case, the governing

Eqs. (3) and (5) contain the transverse curvature term

which influences both the velocity and temperature

fields. The effect of the transverse curvature is important

in some practical applications such as wire or fibre draw-

ing where accurate prediction of flow and heat transfer is

required and thick boundary layer can exist on slender

or near slender bodies.
3. Similarity transformation

We first define the stream function w in the usual

way, u = r�1ow/or, v = � r�1ow/ox and then perform

the similarity transformation

w ¼ 2aamxf ðgÞ

g ¼ b
r2 � r20
r20

T ¼ T1 þ sT T 0

x
L
hðgÞ

ð8Þ

Thus, with the choice of the axial length unit L as

L ¼ U1r20
4amab

ð9Þ

Eqs. (3)–(5) reduce to the following ordinary differential

equations

f 0 ¼ 1þ kh ð10Þ

ðgþ bÞh00 þ h0 þ a f h0 � f 0hð Þ ¼ 0 ð11Þ

In the above equations a and b are dimensionless

scale factors of w and g, respectively, and

k ¼ sT
Ra
Pe

ð12Þ

denotes the mixed convection parameter. The (positive)

Rayleigh and Péclet numbers are defined as

Ra ¼ gbKT 0L
amt

and Pe ¼ U1L
am

ð13Þ

respectively, and the primes denote differentiation with

respect to g.
The system of Eqs. (10) and (11) has to be solved

along with the boundary conditions

f ð0Þ ¼ fw; hð0Þ ¼ 1; hðgÞjr!1 ! 0 ð14Þ

where fw denotes the suction/injection parameter.

In terms of the solution of this boundary value prob-

lem, the velocity field is obtained in the form

uðx; rÞ ¼ UðxÞ � f 0ðgÞ

vðx; rÞ ¼ � 2aam
r

f ðgÞ
ð15Þ

Therefore, in the present problem the radial velocity

at the surface of the cylinder is independent of the axial

coordinate x,

vwðxÞ ¼ � 2aam
r0

fw ð16Þ
4. Exact solution

Eqs. (10) and (11) subject to the boundary conditions

(14) admit the exact solution
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hðgÞ ¼ e�ag ð17Þ

f ðgÞ ¼ fw þ gþ k
a
ð1� hÞ ð18Þ

where

ag ¼ ab
r2 � r20
r20

; ab > 0 ð19Þ

This solution is valid if the scale factors a and b

satisfy (in addition to ab > 0) the equation

aðb� fwÞ � ðkþ 2Þ ¼ 0 ð20Þ

The corresponding dimensional velocity components

and the temperature field are then given by

uðx; rÞ ¼ U1
x
L
� ð1þ ke�agÞ ð21Þ

vðx; rÞ ¼ � 2aam
r

fw þ gþ k
a
ð1� e�agÞ

� �
ð22Þ

T ðx; rÞ ¼ T1 þ sT T 0

x
L
e�ag ð23Þ

The radial wall heat flux is obtained as

qwðxÞ ¼ 2sT ab
kmT 0

L
x
r0

ð24Þ

where km stands for the effective thermal conductivity

of the saturated porous medium.
5. Discussion

The present problem possesses two basic length

scales, a radial and an axial one. A natural unit of a

yardstick which measures the radial distances (from

the cylinder surface) is obviously the cylinder radius r0.

The unit L of the yardstick which measures the axial

distances (from the cylinder base/leading edge, x = 0)

represents according to Eq. (1) the distance x at which

the mainstream velocity takes the (arbitrarily) prescribed

value U1. Thus, according to Eq. (2), the reference

temperature T0 is specified in terms of the ambient

temperature T1 and the (arbitrarily) prescribed

wall temperature Tw at x = L as T0 = sT(Tw(L) � T1).

Obviously, the yardsticks measuring the radial and

axial distances can be chosen arbitrarily. This physical

circumstance manifests itself in the presence of the scale

factors a and b in Eq. (9) which relates the two basic

length scales to each other. For given values of fw and

k, the values of the two scale factors a and b are re-

stricted (in addition to ab > 0) by a single equation,

Eq. (20), only. Now, if we parametrize a and b by an

arbitrary (real) parameter, say c, which will be referred

to hereafter as length to curvature ratio, i.e. if we put

in Eq. (20) a = a(c) and b = b(c), we obtain for c the

equation
aðcÞ½bðcÞ � fw� � ðkþ 2Þ ¼ 0 ð25Þ

Obviously, it is always possible to choose the func-

tions a = a(c) and b = b(c) in such a way that Eq. (25)

admits arbitrarily many solutions c = cn, which all sat-

isfy the condition a(cn) Æ b(cn) > 0 and in some domain

of the parameter plane (fw,k) all of them are real and

distinct. In this way, Eq. (17) yields n (in general distinct)

solutions for h,

h � hnðgÞ ¼ exp �aðcnÞ � bðcnÞ
r2 � r20
r20

� �
ð26Þ

Wemay conclude, therefore, that in the present mixed

convection problem always multiple solutions are possi-

ble. Their physical origin resides in fact in a ‘‘scaling free-

dom’’, i.e. in the freedom to choose arbitrarily the axial

and radial length scales (i.e. the ‘‘length to curvature

ratio’’ of the cylinder), according to our wish. In other

words, by watching the flow on the x and r scales which

are related to each other according to equation

L � Ln ¼
U1r20

4amaðcnÞbðcnÞ
ð27Þ

we will see in general quite different flow and heat trans-

fer characteristics for the one and the same values of the

physical parameters fw and k. Thus, the radial 1% width

dr,n of the dimensionless temperature profiles (26), and

the corresponding radial surface heat flux qw,n(x) are

given by equations

dr;n ¼ r0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2 ln 10

aðcnÞbðcnÞ

s
ð28Þ

and

qw;nðxÞ ¼ 2sT aðcnÞbðcnÞ
kmT 0

Ln

x
r0

¼ 8sT a2ðcnÞb2ðcnÞ
amkmT 0

U1r30
x ð29Þ

respectively.

In order to be more specific, we consider a simple

example in which Eq. (25) is an algebraic equation of

second degree in c such that (at most) dual solutions

can arise. To this end we choose

aðcÞ ¼ bðcÞ � 1

c
ð30Þ

In this case aðcnÞbðcnÞ ¼ 1=c2n > 0 is automatically

satisfied for any real solution cn of Eq. (25) which now

becomes

1

c2
� fw

1

c
� ðkþ 2Þ ¼ 0 ð31Þ

The solutions of Eq. (31) are

1

c�
¼ 1

2
fw �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2
w þ 4kþ 8

q� �
ð32Þ
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Fig. 2. The gray field of the parameter plane (fw,k) above the

critical parabola (38) represents the existence domain of the

exact solutions (21)–(23) corresponding to the parametrization

(30) of the scale factors a and b. Positive and negative values of

k correspond to aiding and opposing flow regimes, respectively.

The points of the critical parabola, except for (fw,k) = (0,�2).

also belong to this domain.
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The length scales on which the corresponding solu-

tions (21)–(23) can be watched are

L� ¼ U1r20
4am

c2� ¼ U1r20
am

fw �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2
w þ 4kþ 8

q� ��2

ð33Þ

It is worth mentioning here that our parameter c
which connects the axial and radial length units L and

r0 to each other according to Eq. (33), is equivalent in

fact to the ‘‘curvature parameter’’ b introduced by Mah-

mood and Merkin [11] in their investigation of the mixed

convection of a clear viscous fluid over a vertical cylin-

der under the same conditions (1) and (2). In the present

notation their b is connected to our length to curvature

ratio c occurring in 4amL ¼ U1r20c
2 by the relationship

c = 2(am/t)
1/2b.

In terms of c± the temperature profiles (26), the radial

surface heat fluxes (29) and the velocity components

(21) and (22) become,

h�ðgÞ ¼ exp � r2 � r20
c2�r

2
0

� �

¼ exp
1

4
fw �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2
w þ 4kþ 8

q� �2

1� r2

r20

� �� �
ð34Þ

qw;�ðxÞ ¼
ST

c4�

8amkmT 0

U1r30
x ð35Þ

u�ðx; rÞ ¼ U1
x
L�

1þ kh�ðgÞ½ � ð36Þ

v�ðx; rÞ ¼ � 2am
r

fw
c�

� 1

c2�
1� r2

r20

� �
þ kð1� h�Þ

� �
ð37Þ

The existence domain of the solutions corresponding

to the parametrization (30) of the scale factors a and b is

the region of the parameter plane (fw,k) where

k P kcritðfwÞ ¼ �2� f 2
w

4
ð38Þ

holds, except for the point (fw,k) = (0,�2) which is

excluded (see Fig. 2). Thus, Eq. (32) can be rewritten as

1

c�
¼ fw

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k� kcrit

p
ð39Þ

Below the critical parabola (38) no solutions of type

(17)–(19) exist.

With each of the (nonvanishing) roots 1/c± of Eq.

(31) corresponding to a given point (fw,k) of the exis-

tence domain (the gray field of Fig. 1) there is associated

a solution (21)–(23) of our boundary value problem.

Thus, to any point (fw,k) of the existence domain there

correspond dual solutions, except for the line k = �2

on which (for fw 5 0) a unique solution exists. This un-

ique solution is:

c ¼ 1

fw
; L ¼ U1r20

4amf 2
w

; k ¼ �2; f w 6¼ 0 ð40Þ
hðgÞ ¼ exp f 2
w 1� r2

r20

� �� �
ð41Þ

uðx; rÞ ¼ U1
x
L
½1� 2hðgÞ� ð42Þ

vðx; rÞ ¼ � 2am
r

f 2
w

r2

r20
� 2ð1� hÞ

� �
ð43Þ

dr ¼ r0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2

f 2
w

ln 10

s
ð44Þ

qwðxÞ ¼ 8sT f 4
w

amkmT 0

U1r30
x ð45Þ

The line k = �2(fw 5 0) is in fact a singular line

where one of the dual solutions, namely that corre-

sponding to the root 1/c = 0 of Eq. (31), ‘‘disappears’’

from the finite scale of our length to curvature ratio c.
The second root of Eq. (31), 1/c = fw specifies then the

above ‘‘unique solution’’ (40)–(45).

For the points of the k-axis above of k = �2 and for

the points of the critical parabola (except for

(fw,k) = (0,�2)) the dual solutions become coincident,

i.e. they appear in these cases as quasi unique solutions

of our boundary value problem. In the former case (i.e.

for k > �2, fw = 0) these coincident solutions are

cþ ¼ �c� � c ¼ ðkþ 2Þ�1=2
;

Lþ ¼ L� � L ¼ U1r20
4amðkþ 2Þ ; k > �2; f w ¼ 0 ð46Þ

hþðgÞ ¼ h�ðgÞ � hðgÞ ¼ exp ðkþ 2Þ 1� r2

r20

� �� �
ð47Þ



Fig. 3. The unique, dual and coincident character of the exact

solutions in their existence domain and how these are associated

with the corresponding lateral suction/injection velocities of the

fluid.
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uþðx; rÞ ¼ u�ðx; rÞ � uðx; rÞ ¼ U1
x
L
1þ khðgÞ½ � ð48Þ

vþðx; rÞ ¼ v�ðx; rÞ � vðx; rÞ

¼ 2am
r

ðkþ 2Þ 1� r2

r20

� �
� kð1� hÞ

� �
ð49Þ

dr;þ ¼ dr;� � dr ¼ r0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2 ln 10

kþ 2

r
ð50Þ

qw;þðxÞ ¼ qw;�ðxÞ � qwðxÞ ¼ 8sT ðkþ 2Þ2 amkmT 0

U1r30
x ð51Þ

The coincident solutions corresponding to the points

of the critical parabola (except for the point (fw,k) =
(0,�2)) are of the form

cþ ¼ c� � c ¼ 2

fw
; Lþ ¼ L� � L ¼ U1r20

amf 2
w

;

k ¼ kcrit; f w 6¼ 0 ð52Þ

hþðgÞ ¼ h�ðgÞ � hðgÞ ¼ exp
f 2
w

4
1� r2

r20

� �� �
ð53Þ

uþðx; rÞ ¼ u�ðx; rÞ � uðx; rÞ ¼ U1
x
L
1þ kcrithðgÞ½ � ð54Þ

vþðx; rÞ ¼ v�ðx; rÞ � vðx; rÞ

¼ � am
r

f 2
w � f 2

w

2
1� r2

r20

� �
þ 2kcritð1� hÞ

� �
ð55Þ

dr;þ ¼ dr;� � dr ¼ r0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8

f 2
w

ln 10

s
ð56Þ

qw;þðxÞ ¼ qw;�ðxÞ � qwðxÞ ¼
ST

2
f 4
w

amkmT 0

U1r30
x ð57Þ

It is also of interest to specify where in their existence

domain the dual solutions are realized by a lateral suc-

tion or injection of the liquid, respectively. The answer

is shown in Fig. 3 and has been obtained by the follow-

ing considerations.

According to Eq. (37), the radial velocity at the cylin-

der surface is now given by

vw;� ¼ � 2am
r0

fw
c�

ð58Þ

Thus, we have (for fw 5 0):

� suction if sgnðfwÞ ¼ sgnðcnÞ ð59Þ

� injection if sgnðfwÞ ¼ �sgnðcnÞ ð60Þ

On the other hand, the sum S and the product P of

the roots 1/c± of Eq. (31) are given in terms of fw and

k by the relationships
S � 1

cþ
þ 1

c�
¼ fw

P � 1

cþ
� 1
c�

¼ �ðkþ 2Þ
ð61Þ

Taking into account Eqs. (58)–(61) one easily de-

duces that the dual solutions are realized by suction or

injection according to the following schematics (see

Fig. 3):

fw > 0 :

cþ > 0; suction

c� > 0; suction

�
as kcrit < k < �2

cþ > 0; suction

c� < 0; injection

�
as k > �2

8>>><
>>>:

ð62Þ

fw < 0 :

cþ < 0; suction

c� < 0; suction

�
as kcrit < k < �2

cþ > 0; injection

c� < 0; suction

�
as k > �2

8>>><
>>>:

ð63Þ

In order to be specific, in Fig. 4 the branching curve

(39) of the dual solutions is shown as a function of the

mixed convection parameter k for fw = +2, which implies

kcrit = �3. As a further illustration, in Fig. 5 the dual

temperature profiles (34) as functions of the radial dis-

tance rP r0 are plotted for (fw,k) = (2,�0.5) and

r0 = 1. The upper and lower branch solutions corre-

spond to the c values c+ = 0.38742 and c- = �1.72076,

and can be realized by a lateral suction and injection

of the fluid with velocity vw,+ = � 4am/(r0c+) < 0 and

vw,� = � 4am/(r0c-) > 0, respectively.

As the expression (21) of the exact solution for the

axial velocity component u(x, r) shows, in the opposing



Fig. 4. The branching curve (39) of the dual solutions as a

function of the mixed convection parameter k for fw = +2. In

this case kcrit = �3. Our exact dual solutions can be realized

both in the aiding (k > 0) and in the opposing (kcrit < k < 0,

k5 �2) flow regimes, respectively.

Fig. 5. The dual temperature profiles (34) as functions of the

radial distance rP r0 are plotted for (fw,k) = (2,�0.5) and

r0 = 1. The upper and lower branch solutions correspond to the

c values c+ = 0.38742 and c- = �1.72076, and can be realized

by a lateral suction and injection, respectively.

Fig. 6. The heat transfer coefficient (65) of the dual solutions

plotted as a function of the of the mixed convection parameter k
for fw = +2.
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flow regime k < 0 in the neighborhood of the cylinder

surface backflow (u#"U) can occur if kcrit 6 k < � 1.

At the radial distance(s)

r� ¼ r0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ln kj j

aðcÞbðcÞ

s

¼ r0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ c2� ln kj j

q
; kcrit 6 k < �1 ð64Þ

where the axial velocity component vanishes, the back-

flow changes then to a forward flow regime (u""U).

Finally, as shown by Eq. (35) the radial wall heat flux

depends on the length to curvature ratio c sensitively. As

an illustration of this dependence, in Fig. 6 the heat

transfer coefficient

h� � sT
U1r30

8amkmT 0

qw;�ðxÞ
x

¼ 1

c4�
ð65Þ
is plotted as a function of the mixed convection para-

meter k for fw = +2. The value of h+ or h- gives for a

specified value of k the heat transferred from the cylin-

der surface to the fluid if k > 0 (direct heat flux) or from

the fluid to the surface if k < 0 (reversed heat flux),

respectively.
6. Summary and conclusions

Exact analytic solutions for a steady mixed con-

vection boundary layer flow over a permeable vertical

cylinder have been obtained in this paper. It has been

shown that multiple solutions can arise both in the aid-

ing as well as in the opposing flow regimes of the prob-

lem. The simple form of the solutions allows a deep

insight into the physical origin of the multiple solutions

encountered. These multiple solutions being obtained

from one and the same analytic expression and for the

same values of fw and k but for different choices of the

length-to-curvature-ratio of the cylinder, we arrive at

the conclusion that the physical origin of the multiplicity

resides simply in our freedom to choose the axial and

radial length scales arbitrarily. In other words, the

occurrence of the multiple solutions (at least in the pres-

ent case) is a subtle length scale effect.
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